Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

$2,2^{\prime}, 2^{\prime \prime}, 2^{\prime \prime \prime}$-($\mathbf{1 , 4}$-Phenylenedinitrilo)tetraacetic acid dihydrate

Juanzhi Yan, ${ }^{\text {a,b }}$ Ling Ma, ${ }^{\text {c }}$ Miaoli Zhu, ${ }^{\text {a* }}$ Xiangdong Zhang ${ }^{\text {d }}$ and Chunhua Ge ${ }^{\mathrm{d} *}$

${ }^{\text {a }}$ Institute of Molecular Science, Chemical Biology and Molecular Engineering Laboratory of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China, ${ }^{\text {b }}$ Education Institute of Taiyuan University, Taiyuan, Shanxi 030001, People's Republic of China, ${ }^{\text {c Department of Biochemistry and }}$ Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China, and ${ }^{\text {d College of Chemistry, Liaoning University, Shengyang }}$ 110036, People's Republic of China
Correspondence e-mail: miaoli@sxu.edu.cn, chhge@lnu.edu.cn

Received 24 April 2012; accepted 27 April 2012

Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.046 ; w R$ factor $=0.119$; data-to-parameter ratio $=12.1$.

In the title compound, $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{8} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, the complete organic molecule is generated by crystallographic inversion symmetry. The dihedral angles between the aniline ring and the acetic acid groups are almost identical, viz. 82.61 (7) and $80.33(7)^{\circ}$. In the crystal, $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the organic molecules and water molecules, forming zigzag chains the c axis. An intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond is also observed.

Related literature

For the crystal structures of metal complexes of the title compound, see: González et al. (1997); Hao, Li, Chen \& Zhang (2006); Hao, Li, Chen, Zhang et al. (2006); Zhang et al. (2007). For synthetic details, see: Zhang et al. (2007).

$\cdot 2 \mathrm{H}_{2} \mathrm{O}$

Experimental

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{8} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	$b=8.4165(19) \AA$
$M_{r}=376.32$	$c=9.953(2) \AA$
Triclinic, $P \overline{1}$	$\alpha=76.656(4)^{\circ}$
$a=5.1446(12) \AA$	$\beta=88.177(4)^{\circ}$

$\gamma=85.715$ (4) ${ }^{\circ}$
$V=418.12(16) \AA^{3}$
$\mu=0.13 \mathrm{~mm}^{-1}$
$Z=1$
Mo $K \alpha$ radiation
Data collection
Bruker SMART 1K CCD areadetector diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
$T_{\text {min }}=0.975, T_{\text {max }}=0.975$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.119$
$S=1.04$
1458 reflections
$T=298 \mathrm{~K}$
$0.20 \times 0.20 \times 0.20 \mathrm{~mm}$

2170 measured reflections
1458 independent reflections
1136 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.014$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 5-\mathrm{H} 5 \mathrm{~B} \cdots \mathrm{O}^{\text {i }}$	0.86	2.13	2.819 (3)	137
$\mathrm{O} 5-\mathrm{H} 5 A \cdots \mathrm{O} 2^{\text {ii }}$	0.92	2.25	3.035 (3)	143
O4-H4 . O 5	0.82	1.78	2.597 (3)	171
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 3$	0.82	1.86	2.653 (2)	164

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and SHELXL97; software used to prepare material for publication: publCIF (Westrip, 2010).

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 21171109), the Specialized Research Fund for the Doctoral Program of Higher Education (grant No. 20111401110002) and the Provincial Natural Science Foundation of Shanxi Province of China (grant No. 2010011011-2).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2473).

References

Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
González, C. A., Hernandez-Padilla, M., Dominguez, S., Mederos, A., Brito, F. \& Arrieta, J. M. (1997). Polyhedron, 16, 2925-2940.
Hao, Z.-F., Li, H.-F., Chen, Y.-W. \& Zhang, Y.-F. (2006). Acta Cryst. E62, m1346-m1347.
Hao, Z. F., Li, H. F., Chen, Y. W., Zhang, Y. F., Yu, J. \& Yu, L. (2006). Chin. J. Inorg. Chem. 22, 1090-1093.
Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Zhang, X.-D., Ge, C.-H., Yu, F., Liu, Q.-T. \& Zhu, M.-L. (2007). Acta Cryst. C63, m519-m521.

supplementary materials

Acta Cryst. (2012). E68, o1623 [doi:10.1107/S1600536812019095]

2,2',2',2"'-(1,4-Phenylenedinitrilo)tetraacetic acid dihydrate

Juanzhi Yan, Ling Ma, Miaoli Zhu, Xiangdong Zhang and Chunhua Ge

Comment

In recent research, the $2,2^{\prime}, 2^{\prime \prime}, 2^{\prime \prime \prime}-\left(1,4-\right.$ phenylenebis(azanetriyl))tetraacetic acid ligand $\left(\mathrm{H}_{4} \mathrm{dbta}\right)$ formed metal complexes. (González et al., 1997; Hao,Li, Chen, Zhang et al., 2006; Hao, Li, Chen, \& Zhang, 2006; Zhang,et al., 2007). We expected to synthesize zinc complexes by the reaction of $\mathrm{H}_{4} \mathrm{dbta}$ with zinc chloride in water. However, colorless crystals of the title compound were obtained by evaporation of the solvent.

The crystal structure of the title compound, $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{8} .2 \mathrm{H}_{2} \mathrm{O}$, is centrosymmetric. The structure of the complete organic molecule and on independent water molecule are shown in Fig. 1. The dihedral angle between the plane $\mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 3 / \mathrm{N} 1$ and the plane $\mathrm{C} 4 / \mathrm{C} 5 / \mathrm{O} 1 / \mathrm{O} 2$ is $82.61(7)^{\circ}$, that between the plane $\mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 3 / \mathrm{N} 1$ and the plane $\mathrm{C} 6 / \mathrm{C} 7 / \mathrm{O} 3 / \mathrm{O} 4$ is $80.33(7)^{\circ}$.
$\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the organic molecules and water molecules, forming zigzag chains (Fig. 2) An intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond is also observed (Fig. 1 and Table 1).

Experimental

All reagents were of analytical grade and used without further purification. 2, $2^{\prime}, 2^{\prime \prime}, 2^{\prime \prime \prime}-(1,4-$ Phenylenebis(azanetriyl))tetraacetic acid($\mathrm{H}_{4} \mathrm{dbta}$) was synthesized by a previously reported method (Zhang et al., 2007). $\mathrm{H}_{4} \mathrm{dbta}$ ($0.17 \mathrm{~g}, 0.5$ $\mathrm{mmol})$ and $\mathrm{ZnCl}_{2}(0.136 \mathrm{~g}, 1.0 \mathrm{mmol})$ were mixed in 15 mL of water. The pH value of the solution was adjusted to 1.0 by HCl . The clear solution was allowed to stand at 323 K for 8 h . It was then filtered and the filtrate was kept at 277 K , allowing slow evaporation. After several weeks, purple single crystals of the title compound were obtained. Yield: 28%. Selected $\operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3455(s), 1723(s), 1656(s), 1527(s), 1446(m), 1367(s), 1320(m), 1252(m), 1230(m), 1190(m)$, $972(m), 888(m), 806(m), 736(m)$. The infrared spectra of the title compound near $3455 \mathrm{~cm}^{-1}$ for $\mathrm{O}-\mathrm{H}$ stretching frequency showed that water of solvation existed in the crystal structure. The strong band at $1723 \mathrm{~cm}^{-1}$ corresponds to the $\mathrm{C}=\mathrm{O}$ stretching frequency of the carboxyl group.

Refinement

H atoms attached to C and O (carboxyl) were placed in geometrically idealized positions with $\mathrm{Csp} p^{2}-\mathrm{H}=0.93 \AA$, $\mathrm{Csp} p^{3}-$ $\mathrm{H}=0.97 \AA$ and refined in the riding model approximation; $\mathrm{U}_{\mathrm{iso}}(\mathrm{H})=\mathrm{xU}_{\mathrm{eq}}(\mathrm{C}, \mathrm{O})$, where $\mathrm{x}=1.5$ for $\mathrm{O}-\mathrm{H}$ and 1.2 for $\mathrm{C}-$ H.

The water H atoms were located in difference Fourier maps $(\mathrm{O}-\mathrm{H}=0.92$ and $0.86 \AA)$ and refined, as riding, with $\mathrm{U}_{\text {iso }}(\mathrm{H})=1.5 \mathrm{U}_{\mathrm{eq}}(\mathrm{O})$.

Computing details

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and SHELXL97 (Sheldrick, 2008); software used to
prepare material for publication: publCIF (Westrip, 2010).

Figure 1
The structure of the organic molecule and one independent water molecule, showing displacement ellipsoids drawn at the 30% probability level. Hydrogen atoms are shown as spheres of arbitrary radius. The dashed lines represent hydrogen bonds. Symmetry code: i) $1-x,-y, 1-z$.

Figure 2

The packing of the crystal structure, showing the zigzag chains and a wave-like layer formed by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (dotted lines). H atoms not involved in the hydrogen bond interactions have been omitted for clarity.

2,2',2",2"'-(1,4-Phenylenedinitrilo)tetraacetic acid dihydrate

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{8} \cdot 2 \mathrm{H}_{2} \mathrm{O}$

$$
M_{r}=376.32
$$

$$
\begin{aligned}
& Z=1 \\
& F(000)=198 \\
& D_{\mathrm{x}}=1.495 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo Ka radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 694 \text { reflections } \\
& \theta=2.5-25.4^{\circ} \\
& \mu=0.13 \mathrm{~mm}^{-1} \\
& T=298 \mathrm{~K} \\
& \text { Block, purple } \\
& 0.20 \times 0.20 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

Triclinic, $P 1$
Hall symbol: -P 1
$a=5.1446$ (12) \AA
$b=8.4165(19) \AA$
$c=9.953$ (2) \AA
$\alpha=76.656(4)^{\circ}$
$\beta=88.177(4)^{\circ}$
$\gamma=85.715(4)^{\circ}$
$V=418.12(16) \AA^{3}$

Data collection

Bruker SMART 1K CCD area-detector diffractometer
Radiation source: fine-focus sealed tube Graphite monochromator
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
$T_{\text {min }}=0.975, T_{\text {max }}=0.975$

> 2170 measured reflections
> 1458 independent reflections
> 1136 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.014$
> $\theta_{\max }=25.0^{\circ}, \theta_{\min }=2.1^{\circ}$
> $h=-5 \rightarrow 6$
> $k=-9 \rightarrow 9$
> $l=-7 \rightarrow 11$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.119$
$S=1.04$
1458 reflections
120 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from
neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0562 P)^{2}+0.147 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.15 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.21 \mathrm{e} \AA^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) $e t c$. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\mathrm{eq}}$
C1	$0.2990(4)$	$0.0540(2)$	$0.58341(19)$	$0.0294(5)$
C2	$0.4610(4)$	$0.1632(2)$	$0.5005(2)$	$0.0326(5)$
H2	0.4370	0.2740	0.4998	0.039^{*}
C3	$0.3429(4)$	$-0.1104(3)$	$0.5810(2)$	$0.0322(5)$

H3	0.2384	-0.1866	0.6353	0.039^{*}
C4	$-0.0514(4)$	$-0.0116(3)$	$0.7566(2)$	$0.0357(5)$
H4A	-0.1229	-0.0793	0.7021	0.043^{*}
H4B	-0.1969	0.0462	0.7934	0.043^{*}
C5	$0.0940(4)$	$-0.1225(3)$	$0.8765(2)$	$0.0361(5)$
C6	$0.0618(4)$	$0.2780(3)$	$0.6670(2)$	$0.0389(5)$
H6A	-0.1036	0.2976	0.7121	0.047^{*}
H6B	0.0541	0.3419	0.5725	0.047^{*}
C7	$0.2789(5)$	$0.3343(3)$	$0.7411(2)$	$0.0383(5)$
N1	$0.1002(3)$	$0.1069(2)$	$0.66661(17)$	$0.0324(4)$
O1	$0.2911(3)$	$-0.0650(2)$	$0.92636(16)$	$0.0483(5)$
H1	0.3127	0.0279	0.8814	0.072^{*}
O2	$0.0295(4)$	$-0.2586(2)$	$0.92856(18)$	$0.0547(5)$
O3	$0.4170(3)$	$0.2397(2)$	$0.82357(17)$	$0.0483(5)$
O4	$0.3047(4)$	$0.4915(2)$	$0.7071(2)$	$0.0627(6)$
H4	0.4199	0.5141	0.7532	0.094^{*}
O5	$0.6861(4)$	$0.5278(3)$	$0.8597(2)$	$0.0822(7)$
H5A	0.6992	0.4518	0.9430	0.123^{*}
H5B	0.7121	0.6234	0.8727	0.123^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0321(11)$	$0.0326(11)$	$0.0241(10)$	$-0.0036(9)$	$-0.0052(8)$	$-0.0065(8)$
C2	$0.0418(13)$	$0.0264(11)$	$0.0300(11)$	$-0.0033(9)$	$-0.0028(9)$	$-0.0069(8)$
C3	$0.0368(12)$	$0.0321(11)$	$0.0280(11)$	$-0.0099(9)$	$-0.0011(9)$	$-0.0052(8)$
C4	$0.0328(12)$	$0.0411(13)$	$0.0347(12)$	$-0.0073(10)$	$0.0016(9)$	$-0.0110(10)$
C5	$0.0380(13)$	$0.0375(13)$	$0.0341(12)$	$-0.0078(10)$	$0.0018(9)$	$-0.0097(9)$
C6	$0.0370(13)$	$0.0352(12)$	$0.0437(13)$	$0.0019(10)$	$-0.0030(10)$	$-0.0088(10)$
C7	$0.0406(13)$	$0.0338(12)$	$0.0429(13)$	$-0.0051(10)$	$0.0081(10)$	$-0.0139(10)$
N1	$0.0328(10)$	$0.0331(10)$	$0.0321(9)$	$-0.0034(7)$	$0.0001(7)$	$-0.0092(7)$
O1	$0.0570(11)$	$0.0431(10)$	$0.0418(9)$	$-0.0155(8)$	$-0.0174(8)$	$0.0026(7)$
O2	$0.0653(12)$	$0.0403(10)$	$0.0558(11)$	$-0.0186(9)$	$-0.0060(9)$	$-0.0004(8)$
O3	$0.0539(11)$	$0.0426(10)$	$0.0487(10)$	$-0.0109(8)$	$-0.0130(8)$	$-0.0069(8)$
O4	$0.0733(15)$	$0.0322(10)$	$0.0833(15)$	$-0.0093(9)$	$-0.0134(11)$	$-0.0115(9)$
O5	$0.0968(17)$	$0.0633(14)$	$0.0892(16)$	$-0.0345(12)$	$-0.0230(13)$	$-0.0107(11)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{C} 1-\mathrm{C} 3$	$1.391(3)$	$\mathrm{C} 5-\mathrm{O} 1$	$1.313(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.393(3)$	$\mathrm{C} 6-\mathrm{N} 1$	$1.440(3)$
$\mathrm{C} 1-\mathrm{N} 1$	$1.406(3)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.519(3)$
$\mathrm{C} 2-\mathrm{C} 3^{\mathrm{i}}$	$1.385(3)$	$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	0.9700
$\mathrm{C} 2-\mathrm{H} 2$	0.9300	$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$	0.9700
$\mathrm{C} 3-\mathrm{C} 2^{\mathrm{i}}$	$1.385(3)$	$\mathrm{C} 7-\mathrm{O} 3$	$1.210(3)$
$\mathrm{C} 3-\mathrm{H} 3$	0.9300	$\mathrm{C} 7-\mathrm{O} 4$	$1.304(3)$
$\mathrm{C} 4-\mathrm{N} 1$	$1.437(3)$	$\mathrm{O} 1-\mathrm{H} 1$	0.8200
$\mathrm{C} 4-\mathrm{C} 5$	$1.514(3)$	$\mathrm{O} 4-\mathrm{H} 4$	0.8200
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9700	$\mathrm{O} 5-\mathrm{H} 5 \mathrm{~A}$	0.9236
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	0.9700	$\mathrm{O} 5-\mathrm{H} 5 \mathrm{~B}$	0.8646

C5-O2	1.209 (3)		
C3-C1-C2	117.08 (19)	O1-C5-C4	117.95 (19)
$\mathrm{C} 3-\mathrm{C} 1-\mathrm{N} 1$	121.21 (19)	N1-C6-C7	111.98 (18)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	121.71 (18)	N1-C6-H6A	109.2
C3 ${ }^{\text {i }} \mathrm{C} 2-\mathrm{C} 1$	121.50 (19)	C7-C6-H6A	109.2
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	119.3	N1-C6-H6B	109.2
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	119.3	C7-C6-H6B	109.2
C2 ${ }^{\text {i }}$ - 3 3- C 1	121.4 (2)	H6A-C6-H6B	107.9
C2 ${ }^{\text {i }}$ - $\mathrm{C} 3-\mathrm{H} 3$	119.3	O3-C7-O4	123.3 (2)
$\mathrm{C} 1-\mathrm{C} 3-\mathrm{H} 3$	119.3	O3-C7-C6	122.2 (2)
N1-C4-C5	115.57 (18)	O4-C7-C6	114.4 (2)
N1-C4-H4A	108.4	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4$	119.59 (17)
C5-C4-H4A	108.4	C1-N1-C6	119.60 (17)
N1-C4-H4B	108.4	C4-N1-C6	120.69 (17)
C5-C4-H4B	108.4	C5-O1-H1	109.5
H4A-C4-H4B	107.5	C7-O4-H4	109.5
$\mathrm{O} 2-\mathrm{C} 5-\mathrm{O} 1$	120.0 (2)	H5A-O5-H5B	109.1
$\mathrm{O} 2-\mathrm{C} 5-\mathrm{C} 4$	122.0 (2)		
$\mathrm{C} 3-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3{ }^{\text {i }}$	0.1 (3)	C3-C1-N1-C4	3.5 (3)
N1-C1-C2-C3 ${ }^{\text {i }}$	179.81 (18)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4$	-176.25 (18)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 3-\mathrm{C} 2^{\text {i }}$	-0.1 (3)	C3-C1-N1-C6	179.58 (18)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 3-\mathrm{C} 2^{\mathrm{i}}$	-179.81 (18)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 6$	-0.1 (3)
N1-C4-C5-O2	-152.7 (2)	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1$	68.0 (2)
N1-C4-C5-O1	29.3 (3)	C5-C4-N1-C6	-108.1 (2)
N1-C6-C7-O3	-20.9 (3)	C7-C6-N1-C1	-71.6 (2)
N1-C6-C7-O4	158.3 (2)	C7-C6-N1-C4	104.5 (2)

Symmetry code: (i) $-x+1,-y,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O5—H5B $\cdots \mathrm{O} 2^{\text {ii }}$	0.86	2.13	$2.819(3)$	137
$\mathrm{O}^{\mathrm{H}} \mathrm{H} 5 A \cdots 2^{\text {iii }}$	0.92	2.25	$3.035(3)$	143
O4—H4 $\cdots \mathrm{O} 5$	0.82	1.78	$2.597(3)$	171
O1—H1 $\cdots \mathrm{O} 3$	0.82	1.86	$2.653(2)$	164

Symmetry codes: (ii) $x+1, y+1, z$; (iii) $-x+1,-y,-z+2$.

